On the Pytkeev Property in Spaces of Continuous Functions (ii)
نویسندگان
چکیده
We prove that for each Polish space X , the space C(X) of continuous real-valued functions on X satisfies (a strong version of) the Pytkeev property, if endowed with the compactopen topology. We also consider the Pytkeev property in the case where C(X) is endowed with the topology of pointwise convergence.
منابع مشابه
On the Pytkeev Property in Spaces of Continuous Functions
Answering a question of Sakai, we show that the minimal cardinality of a set of reals X such that Cp(X) does not have the Pytkeev property is equal to the pseudo-intersection number p. Our approach leads to a natural characterization of the Pytkeev property of Cp(X) by means of a covering property of X, and to a similar result for the Reznichenko property of Cp(X).
متن کاملOn rarely generalized regular fuzzy continuous functions in fuzzy topological spaces
In this paper, we introduce the concept of rarely generalized regular fuzzy continuous functions in the sense of A.P. Sostak's and Ramadan is introduced. Some interesting properties and characterizations of them are investigated. Also, some applications to fuzzy compact spaces are established.
متن کاملON SOMEWHAT FUZZY AUTOMATA CONTINUOUS FUNCTIONS IN FUZZY AUTOMATA TOPOLOGICAL SPACES
In this paper, the concepts of somewhat fuzzy automata continuous functions and somewhat fuzzy automata open functions in fuzzy automata topological spaces are introduced and some interesting properties of these functions are studied. In this connection, the concepts of fuzzy automata resolvable spaces and fuzzy automata irresolvable spaces are also introduced and their properties are studied.
متن کاملC-Class Functions and Remarks on Fixed Points of Weakly Compatible Mappings in G-Metric Spaces Satisfying Common Limit Range Property
In this paper, using the contexts of C-class functions and common limitrange property, common fixed point result for some operator are obtained.Our results generalize several results in the existing literature. Some examplesare given to illustrate the usability of our approach.
متن کاملCompleteness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کامل